
1

Copyright © 2023 Optimalon Software Ltd.

Automation of 1DCutX in Excel (only 32-bit) by VBA.

Copyright © 2023 Optimalon Software Ltd. All rights reserved.
https://www.optimalon.com

Since version 4.5.0 1DCutX supports automation by Visual Basic for Application (VBA) in Microsoft
Excel 32-bit editions. It allows the clients to customize their spreadsheets and run the length cutting
optimization without invoking the standard 1DCutX dialog.

If you want to use this possibility then the first think you should add a reference to the LinearCutter.tlb
file in the VBA “Tools” -> “Reference”. You should click on button “Browse” and navigate to the folder
when you installed 1DCutX (by default is C:\Program Files\Optimalon Software\1DCutX). There you
should select LinearCutter.tlb file and press Ok.

Pic 1. VBA Preferences with selection of LinearCutter.tlb

This file provides all necessary information to VBA about 1DCutX classes, properties and methods.
Once you specified it you can create an instance of linear cutter class, assign required properties and
run the calculation.

Creation of the object:
Public cut1DObject As New LinearCutter.RuntimeCutter

Declaration of the calculator interface:
Dim calculator As LinearCutter.IRuntimeCutter

2

Copyright © 2023 Optimalon Software Ltd.

Assigning variable to the object:
Set calculator = cut1DObject

Now you can setup the calculator properties and run the optimization. All numerical values assigned as
string in fixed, scientific or fractional formats like “4.1”, “1.2e-3” or “2/3”

There are following numerical properties available:

MinOffCut. Minimal off-cut (waste size). Some cutting machines are unable to make a cut on tiny
pieces, because of the technical restriction, like cutting several millimetres from the glass. This property
specifies what would be the minimal size of the cut-offs and therefore overcomes such problems.

Kerf. Saw kerf (thickness). Cutting produces the gap between parts that shrinks the result part sizes by
a saw thickness. This property takes in account the saw kerf during the optimization and generates the
layout accordingly.

TrimBeginning, TrimEnd. It's not a rear case when the stocks have rough edges that have to be
cut before further processing. These properties provide the way to specify the trim sizes for the stocks
and take them into account during the cutting optimization

You can tune up the calculation and reports generated by setting the following properties, most of them
are boolean values (True / False):

bool CompleteMode. Complete / incomplete mode. In some cases the supply of the stocks is limited
and all parts cannot be cut from it.

bool MinimizeLayouts. This property is very important for woodcutting industries. If all wood
stocks have the same layout then they can be placed in a pile and cut simultaneously. That dramatically
improves the productivity.

bool IncludeLayouts. If this property is set to True then individual layout spreadsheets will be
generated. 1DCutX can generate separate spreadsheets for each cutting layouts with names “1D_x”
where x - number of layout. If such information is not required then you can turn off the layout
generation by setting this property to False.

bool InsertGraphic. If this property is set to True then graphical images will be inserted into the
report spreadsheets for each layout.

bool IncludeCutList. If this property is set to True then each layout spreadsheet will have
location of each cut.

3

Copyright © 2023 Optimalon Software Ltd.

bool IncludePartInfo. If this property is set to True then each layout spreadsheet will have list of
all cut parts, their IDs, sizes and locations.

int SortColumnSummary. Index the column to sort in the summary table. It goes from 0 (“Stock
Length” column) to 6 (‘Cost” column).

bool SortColumnSummaryAscending. Sort the column the summary table by ascending (True) or
descending (False) order.

bool IncludeCutInstruction. If this property is set to True then the spreadsheet 1D_cutlist will
be generated that contains cutting Instructions for each layout/stock. Numbers after column "D" specify
the length to cut from the stock. After each cut a stock gets smaller and the numbers indicate where to
make the next cut on this smaller stock.

bool IncludeMatrix. If this property is set to True then the spreadsheet 1D_matrix will be
generated. This spreadsheet includes the matrix of the stocks and number of parts cut from the stocks.
For example, if a part P1 has 2 in a cell for a stock Stock1 then it means you should cut two parts P1
from the stock Stock1.

bool MatrixOrderStockPart. If this property is set to True then the spreadsheet 1D_matrix will
contains list of stocks vertically and parts will be listed in horizontal direction. If it’s False then stocks will
be listed horizontally and parts vertically.

bool IncludeStockOrder. If this property is set to True then the spreadsheet 1D_stock_order will
be generated that contains list of stocks to order for the project.

bool IncludeWasteList. If this property is set to True then the spreadsheet 1D_waste_list will be
generated that contains list of waste / left overs of stocks for the project.

bool IncludeUncutPartList. If this property is set to True then the spreadsheet 1D_uncut_parts
will be generated that contains list of parts that were not cut / used for the project.

bool AscendingOrder. If this property is set to True then the calculation sorts linear parts in
ascending (increasing length) order (from small to large). Otherwise it will sort in descending order.

bool AllowCombineStock. If this property is set to True then the calculation will combine several
short stocks into one bigger for parts that exceed any of existing stocks.

int CombineStockLimit. Some hardware or logistic limitations can require usage of only few
different stocks length. In the worst case scenario only one length is allowed. This option accounts for
such requirements and specify how many different stock length can combined into one stock.

bool AllowCombineStockWaste. If you have specified any waste stocks (remnants from previous
cuts) you can combine them to actual stocks by selecting this option. Setting to False will use strictly
actual stocks or waste ones without mixing them.

4

Copyright © 2023 Optimalon Software Ltd.

bool UseAngle. If this property is set to True then the calculation will use angle parts information
specified.

bool AllowAngleRotate. If this property is set to True then the angle cut parts can be turned along
X-axis.

bool AllowAngleFlip. If this property is set to True then the angle cut parts can be turned along Y-
axis (switch start and end).

bool ExcactAngleOnly. If this property is set to True then the start and end angles of connected
parts must be the same.

After you specified all calculation and report settings you should setup the cell ranges that contain
information about your stocks and parts.

All ranges are specified in Excel format as following examples:

• Sheet1!A7 specifies one cell locates on the column "A" and row 7 on the worksheet
"Sheet1".

• Sheet1!B2:B5 specifies cells on the column "B" from row 2 to row 5 inclusive on the
worksheet "Sheet1".

• Sheet2!$C:$C specifies all cells from the column "C" on the worksheet "Sheet2".
• Sheet1!$8:$8 specifies all cells from the row 8 on the worksheet "Sheet1".

Some ranges are mandatory and some are optional:

Cells_StockID (optional). This range allows specifying the cells that contain text identifiers for each
linear stock piece. If this range is omitted then default identifiers "1", "2", etc. are used.

Cells_StockLength (mandatory). This range specifies the cells that contain length (size) of the linear
stock pieces. These pieces will be cut by smaller pieces, so-called linear parts.

Cells_StockQty (optional). If this range left blank then 1DCutX will calculate how many pieces of linear
stocks are required to cut all linear parts. If you specified this range it means you already know how
many pieces you have and you need to utilize them.

Cells_StockPrice (optional). If you specified this range then 1DCutX will calculate the total material
cost and report it in the summary table.

Cells_StockDiameter (optional). This range of the cells containing the diameter of the linear stocks. If
you specified it then you should specified diameters for your parts as well. 1DCutX will match stocks
and parts by their diameters and use only such stocks that have the same diameter as parts cut from
the stocks.

Cells_StockMaterial (optional). This range of the cells containing the material type of the linear stocks.
If you specified it then you should specified the material types for your parts as well. 1DCutX will match
stocks and parts by their material types and use only such stocks that have the same material type as
parts cut from the stocks.

5

Copyright © 2023 Optimalon Software Ltd.

Cells_PartID (optional). This range allows specifying the cells that contain text identifiers for each linear
part. If this range is omitted then default identifiers "1", "2", etc. are used.

Cells_PartLength (mandatory). This range specifies the cells that contain length (size) of the linear
parts that will be cut from the linear stocks.

Cells_PartQty (mandatory). This range specifies the cells that contain quantity (number) of the linear
parts that have to be cut from the linear stocks.

Cells_PartDiameter (optional). This range contains the diameter of the linear parts. Only stocks with
the same diameter will be considered during the calculation.

Cells_PartMaterial (optional). This range contains the material type of the linear parts. Only stocks with
the same material type will be considered during the calculation.

Now you can run the calculation by calling the method Execute. It returns empty string if the calculation
was done successfully. Should any errors happened during the calculation this method returns the text
explanation of the error.

Example:

' Declaration of the runtime cutter class
Public cut1DObject As New LinearCutter.RuntimeCutter

Sub RunTest1()
' Declaraion of the calculator interface
Dim calculator As LinearCutter.IRuntimeCutter
 Set calculator = cut1DObject
 Dim result As String

 calculator.CompleteMode = True
 calculator.Kerf = "0.2"
 calculator.TrimBeginning = "1/4"
 calculator.IncludeMatrix = True
 calculator.Cells_StockID = "Data!A2:A4"
 calculator.Cells_StockLength = "Data!B2:B4"
 calculator.Cells_StockQty = "Data!C2:C4"
 calculator.Cells_StockPrice = "Data!D2:D4"
 calculator.Cells_PartID = "Data!H2:H6"
 calculator.Cells_PartLength = "Data!I2:I6"
 calculator.Cells_PartQty = "Data!J2:J6"
 result = calculator.Execute
End Sub

6

Copyright © 2023 Optimalon Software Ltd.

This example is included into 1DCutX installation.
You can load and run it from “Start -> All Programs -> 1DCutX -> Examples -> VBA Example.xls”

